ea.co.kr [원서] Zelati V.C., Macri M. - Homoclinic solutions to invariant tori in a center manifold > eaea8 | ea.co.kr report

[원서] Zelati V.C., Macri M. - Homoclinic solutions to invariant tori in a center manifold > eaea8

본문 바로가기

eaea8


[[ 이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다. ]


[원서] Zelati V.C., Macri M. - Homoclinic solutions to invariant tori in…

페이지 정보

작성일 20-05-19 23:12

본문




Download : Zelati V C Macri M Homoclinic solutions to invariant tori in a center manifold.pdf




[원서] Zelati V.C., Macri M. - Homoclinic solutions to invariant tori in a center manifold
설명





[원서] Zelati V.C., Macri M. - Homoclinic solutions to invariant tori in a center manifold , [원서] Zelati V.C., Macri M. - Homoclinic solutions to invariant tori in a center manifold기타솔루션 , 솔루션
순서


솔루션/기타

Download : Zelati V C Macri M Homoclinic solutions to invariant tori in a center manifold.pdf( 60 )



HOMOCLINIC SOLUTIONS TO INVARIANT TORI IN A CENTER MANIFOLD

VITTORIO COTI ZELATI AND MARTA MACRI
Abstract. We consider the Lagrangian
L(y1;y_1;y2;y_2;q;q_) = 2(y_2 !2y2)+ 2(y_2 !2y2)+ 2q_2+(1+(y1;y2))V (q); where V is non-negative, periodic in q and such that V (0) = V 0(0) = 0. We prove, using critical point t…(skip)





[원서] Zelati V.C., Macri M. - Homoclinic solutions to invariant tori in a center manifold


Zelati%20V%20C%20%20Macri%20M%20%20Homoclinic%20solutions%20to%20invariant%20tori%20in%20a%20center%20manifold_pdf_01.gif Zelati%20V%20C%20%20Macri%20M%20%20Homoclinic%20solutions%20to%20invariant%20tori%20in%20a%20center%20manifold_pdf_02.gif Zelati%20V%20C%20%20Macri%20M%20%20Homoclinic%20solutions%20to%20invariant%20tori%20in%20a%20center%20manifold_pdf_03.gif Zelati%20V%20C%20%20Macri%20M%20%20Homoclinic%20solutions%20to%20invariant%20tori%20in%20a%20center%20manifold_pdf_04.gif Zelati%20V%20C%20%20Macri%20M%20%20Homoclinic%20solutions%20to%20invariant%20tori%20in%20a%20center%20manifold_pdf_05.gif Zelati%20V%20C%20%20Macri%20M%20%20Homoclinic%20solutions%20to%20invariant%20tori%20in%20a%20center%20manifold_pdf_06.gif
솔루션,기타,솔루션




다.
REPORT 73(sv75)



해당자료의 저작권은 각 업로더에게 있습니다.

ea.co.kr 은 통신판매중개자이며 통신판매의 당사자가 아닙니다.
따라서 상품·거래정보 및 거래에 대하여 책임을 지지 않습니다.
[[ 이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다 ]]

[저작권이나 명예훼손 또는 권리를 침해했다면 이메일 admin@hong.kr 로 연락주시면 확인후 바로 처리해 드리겠습니다.]
If you have violated copyright, defamation, of rights, please contact us by email at [ admin@hong.kr ] and we will take care of it immediately after confirmation.
Copyright © ea.co.kr All rights reserved.