ea.co.kr 解法(솔루션) - solution [수학의 응용과 빅데이터] The Elements of Statistical Learning, Data Mining, Inference, Second > eaea6 | ea.co.kr report

解法(솔루션) - solution [수학의 응용과 빅데이터] The Elements of Statistical Learning, Data Mining, Inference, Second > eaea6

본문 바로가기

뒤로가기 eaea6

解法(솔루션) - solution [수학의 응용과 빅데이터] The Elements of Statistical Learn…

페이지 정보

작성일 20-11-13 19:17

본문




Download : 솔루션 - solution [수학의.pdf




2003 challenge
nonlinear dimension reduction,

1. Introduction


14. Unsupervised Learning Spectral clustering, kernel PCA,
解法(솔루션) - solution [수학의 응용과 빅데이터] The Elements of Statistical Learning, Data Mining, Inference, Second
10. Boosting and Additive Trees New example from ecology; some
레포트 > 기타

of the lasso



Chapter What’s new


8. Model Inference and Averaging
Google page rank algorithm, a
설명
6. Kernel Smoothing Methods
출판사 - Jerome - Springer


솔루션 - solution [수학의-6741_01_.jpg 솔루션 - solution [수학의-6741_02_.jpg 솔루션 - solution [수학의-6741_03_.jpg 솔루션 - solution [수학의-6741_04_.jpg 솔루션 - solution [수학의-6741_05_.jpg
Additional illustrations of RKHS
direct approach to ICA

11. Neural Networks Bayesian neural nets and the NIPS
솔루션 - solution [수학의 응용과 빅데이터] The Elements of Statistical Learning, Data Mining, Inference, Second
13. Prototype Methods and
Path algorithm for SVM classifier
4. Linear Methods for Classification Lasso path for logistic regression
Nearest-Neighbors
Flexible Discriminants
factorization archetypal analysis,
2. Overview of Supervised Learning
솔루션 - solution [수학의 응용과 빅데이터] The Elements of Statistical Learning, Data Mining, Inference, Second Edition 저자 - Hastie, Trevor, Tibshirani, Robert, Friedman, 출판사 - Jerome - Springer

목 차
15. Random Forests New
material split off to Chapter 16.
9. Additive Models, Trees, and

解法(솔루션) - solution [수학의 응용과 빅데이터] The Elements of Statistical Learning, Data Mining, Inference, Second Edition
18. High-Dimensional Problems New

저자 - Hastie, Trevor, Tibshirani, Robert, Friedman,
해법 - solution [수학의 응용과 빅데이터] The Elements of Statistical Learning, Data Mining, Inference, Second Edition - Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome - Springer

sparse PCA, non-negative matrix
5. Basis Expansions and Regularization
순서

7. Model Assessment and Selection Strengths and pitfalls of crossvalidation

Related Methods





3. Linear Methods for Regression LAR algorithm and generalizations
16. Ensemble Learning New

Download : 솔루션 - solution [수학의.pdf( 72 )


17. Undirected Graphical Models New
12. Support Vector Machines and
다.
전체 40,339건 1 페이지
해당자료의 저작권은 각 업로더에게 있습니다.

evga.co.kr 은 통신판매중개자이며 통신판매의 당사자가 아닙니다.
따라서 상품·거래정보 및 거래에 대하여 책임을 지지 않습니다.
Copyright © ea.co.kr. All rights reserved.
PC 버전으로 보기